A New Method for the Assessment of the Oxidative Potential of Both Water-Soluble and Insoluble PM

Author:

Frezzini Maria AgostinaORCID,Di Iulio Gianluca,Tiraboschi Caterina,Canepari SilviaORCID,Massimi LorenzoORCID

Abstract

Water-soluble and insoluble fractions of airborne particulate matter (PM) exhibit different toxicological potentials and peculiar mechanisms of action in biological systems. However, most of the research on the oxidative potential (OP) of PM is focused exclusively on its water-soluble fraction, since experimental criticisms were encountered for detaching the whole PM (soluble and insoluble species) from field filters. However, to estimate the actual potential effects of PM on human health, it is essential to assess the OP of both its water-soluble and insoluble fractions. In this study, to estimate the total OP (TOP), an efficient method for the detachment of intact PM10 from field filters by using an electrical toothbrush was applied to 20 PM10 filters in order to obtain PM10 water suspensions to be used for the DCFH, AA and DTT oxidative potential assays (OPDCFH, OPAA and OPDTT). The contribution of the insoluble PM10 to the TOP was evaluated by comparing the TOP values to those obtained by applying the three OP assays to the water-soluble fraction of 20 equivalent PM10 filters. The OP of the insoluble fraction (IOP) was calculated as the difference between the TOP and the WSOP. Moreover, each PM10 sample was analyzed for the water-soluble and insoluble fractions of 10 elements (Al, Cr, Cs, Cu, Fe, Li, Ni, Rb, Sb, Sn) identified as primary elemental tracers of the main emission sources in the study area. A principal component analysis (PCA) was performed on the data obtained to identify the predominant sources for the determination of TOP, WSOP, and IOP. Results showed that water-soluble PM10 released by traffic, steel plant, and biomass burning is mainly responsible for the generation of the TOP as well as of the WSOP. This evidence gave strength to the reliability of the results from OP assays performed only on the water-soluble fraction of PM. Lastly, the IOPDCFH and IOPDTT were found to be principally determined by insoluble PM10 from mineral dust.

Funder

Sapienza University of Rome

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference83 articles.

1. WHO Global Air Quality Guidelines: Particulate Matter (PM2. 5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide: Executive Summary,2021

2. Half the world’s population are exposed to increasing air pollution

3. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Outdoor Air Pollution;IARC Monogr. Eval. Carcinog. Risks Hum.,2016

4. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter

5. Systematic review and metaanalysis of air pollution exposure and risk of diabetes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3