Abstract
Based on the perspective of urban agglomerations, this paper explores the impact mechanism of environmental regulation on haze, and tries to find the most suitable environmental regulation intensity for haze control in urban agglomerations. This paper uses the fixed-effect model and panel threshold model to verify the effect of environmental regulations on haze concentration in 206 cities in China. A grouping test is also conducted to verify whether a regional heterogeneity arises due to different regional development levels for five urban agglomerations and non-five urban agglomerations, respectively. The results show that: (1) In the linear model, strengthening environmental regulation can reduce the haze concentration, but this effect is not significant. The effect of environmental regulation on haze control in the five major urban agglomerations is better than that in the non-five major urban agglomerations; (2) In the nonlinear model, the impact of environmental regulation on haze shows a “U” trend in the five major urban agglomerations and an inverted “U” trend in the non-five major urban agglomerations. Although the results are not significant, we can still conclude that the impact of environmental regulation on haze varies depending on the level of regional economic development. Therefore, the environmental regulation should be formulated according to local conditions; (3) In the threshold model, the impact of environmental regulation on the haze concentration in five major urban agglomerations has a threshold effect. In the five major urban agglomerations, although environmental regulation can effectively reduce haze concentration, the governance effect will weaken as the environmental regulation increases. This study plays a positive role in guiding local governments to adjust environmental regulation intensity according to local conditions and helping local environmental improvement.
Funder
Beijing Social Science Foundation
National Natural Science Foundation of China
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献