Tropical Air Chemistry in Lagos, Nigeria

Author:

Odu-Onikosi Adebola,Herckes PierreORCID,Fraser Matthew,Hopke PhilipORCID,Ondov John,Solomon Paul A.,Popoola Olalekan,Hidy George M.

Abstract

The Nigerian city of Lagos experiences severe air pollution as a result of emissions and subsequent atmospheric photochemistry and aerosol chemistry. A year-long study, between August 2020 and July 2021, included measurements of gas-phase and aerosol processes, with surface meteorology at six urban sites. The sites were selected to represent near seacoast conditions, urban sites, and inland locations near agricultural and grassland ecosystems. The observations included continuous concentrations for CO, SO2, NOx, O3, PM2.5, and PM10. Samples were collected and analyzed for speciated volatile organic compounds (VOCs) and particulate chemical composition including inorganic and organic chemical species. The average diel variations in concentrations indicated well-known local photochemistry resulting from the presence of combustion sources, including motor vehicles, petroleum production and use, and open burning. The annual diel characteristics were emission-dependent and were modulated by meteorological variability, including the sea breeze and the seasonal changes associated with monsoons and Harmattan winds. Gases and particulate matter varied daily, consistent with the onset of source activities during the day. Fine particles less than 2.5 μm in diameter (PM2.5) included both primary particles from emission sources and secondary particles produced in the atmosphere by photochemical reactions. Importantly, particle sources included a large component of dust and carbonaceous material. For the latter, there was evidence that particle concentrations were dominated by primary sources, with little secondary material formed in the atmosphere. From complementary measurements, there were occasions when regional chemical processes affected the local conditions, including transportation, industry, commercial activity, and open waste burning.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference85 articles.

1. Precursors Influencing Tropospheric Ozone Formation and Apportionment in Three Districts of Ilupeju Industrial Estate;Azeez;Am. J. Chem.,2016

2. The Seasonal Variation of the Concentrations of Ozone, Sulfur Dioxide, and Nitrogen Oxides in Two Nigerian Cities

3. Air Pollution: A Silent Killer;Kemper,2022

4. Air Pollution in the Niger Delta Area of Nigeria;Tawari;Int. J. Fish. Aquat. Sci.,2012

5. Long-term measurements of the transport of African mineral dust to the southeastern United States: Implications for regional air quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3