Non-Hydrostatic Regcm4 (Regcm4-NH): Evaluation of Precipitation Statistics at the Convection-Permitting Scale over Different Domains

Author:

Stocchi PaoloORCID,Pichelli EmanuelaORCID,Torres Alavez Jose Abraham,Coppola Erika,Giuliani Graziano,Giorgi Filippo

Abstract

Recent studies over different geographical regions of the world have proven that regional climate models at the convection-permitting scale (CPMs) improve the simulation of precipitation in many aspects, such as the diurnal cycle, precipitation frequency, intensity, and extremes at daily—but even more at hourly—time scales. Here, we present an evaluation of climate simulations with the newly developed RegCM4-NH model run at the convection-permitting scale (CP-RegCM4-NH) for a decade-long period, over three domains covering a large European area. The simulations use a horizontal grid spacing of ~3 km and are driven by the ERA-Interim reanalysis through an intermediate driving RegCM4-NH simulation at ~12 km grid spacing with parameterized deep convection. The km-scale simulations are evaluated against a suite of hourly observation datasets with high spatial resolutions and are compared to the coarse-resolution driving simulation in order to assess improvements in precipitation from the seasonal to hourly scale. The results show that CP-RegCM4-NH produces a more realistic representation of precipitation than the coarse-resolution simulation over all domains. The most significant improvements were found for intensity, heavy precipitation, and precipitation frequency, both on daily and hourly time scales in all seasons. In general, CP-RegCM4-NH tends to correctly produce more intense precipitation and to reduce the frequency of events compared to the coarse-resolution one. On the daily scale, improvements in CP simulations are highly region dependent, with the best results over Italy, France, and Germany, and the largest biases over Switzerland, the Carpathians, and Greece, especially during the summer seasons. At the hourly scale, the improvement in CP simulations for precipitation intensity and spatial distribution is clearer than at the daily timescale. In addition, the representation of extreme events is clearly improved by CP-RegCM4-NH, particularly at the hourly time scale, although an overestimation over some subregions can be found. Although biases between the model simulations at the km-scale and observations still exist, this first application of CP-RegCM4-NH at high spatial resolution indicates a clear benefit of convection-permitting simulations and encourages further assessments of the added value of km-scale model configurations for regional climate change projections.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3