Passive Sampling as a Tool to Assess Atmospheric Pesticide Contamination Related to Vineyard Land Use

Author:

Martin StéphanORCID,Dévier Marie-Hélène,Cruz Justine,Duporté GeoffroyORCID,Barron Emmanuelle,Gaillard Juliette,Le Menach Karyn,Pardon PatrickORCID,Augagneur Sylvie,Flaud Pierre-Marie,Villenave Éric,Budzinski HélèneORCID

Abstract

The massive use of pesticides in agriculture has led to widespread contamination of the environment, particularly the atmospheric compartment. Thirty-six pesticides, most used in viticulture, were monitored in ambient air using polyurethane foams as passive air samplers (PUF-PAS). Spatiotemporal data were collected from the samplers for 10 months (February–December 2013), using two different sampling times (1 and 2 months) at two different sites in a chateau vineyard in Gironde (France). A high-volume active air sampler was also deployed in June. Samples were extracted with dichloromethane using accelerated solvent extraction (ASE) (PUFs from both passive and active) or microwave-assisted extraction (MAE) (filters from active sampling). Extracts were analyzed by both gas and liquid chromatography coupled with tandem mass spectrometry. A total of 23 airborne pesticides were detected at least once. Concentrations in PUF exposed one month ranged from below the limits of quantification (LOQs) to 23,481 ng PUF−1. The highest concentrations were for folpet, boscalid, chlorpyrifos-methyl, and metalaxyl-m—23,481, 17,615, 3931, and 3324 ng PUF−1. Clear seasonal trends were observed for most of the pesticides detected, the highest levels (in the ng m−3 range or the µg PUF−1 range) being measured during their application period. Impregnation levels at both sites were heterogeneous, but the same pesticides were involved. Sampling rates (Rs) were also estimated using a high-volume active air sampler and varied significantly from one pesticide to another. These results provide preliminary information on the seasonality of pesticide concentrations in vineyard areas and evidence for the effectiveness of PUF-PAS to monitor pesticides in ambient air.

Funder

Aquitaine Region

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3