The Emission Characteristics of Pollutants from Thermal Desorption of Soil Contaminated by Transformer Oil

Author:

Jiang Shixiong,Weng Sunxian

Abstract

In order to reduce pollutant emission from substation fires into the soil environment, developing technology to remove pollutants in soil after substation fires is necessary. Among the soil remediation technologies, thermal desorption has been proven to be an effective soil remediation method. In this paper, the effects of thermal desorption temperature and atmosphere on the releasing characteristics of pollutants in the soil polluted by waste oil in the accident oil pool in the substation were examined. The results showed that when the thermal desorption temperature was 500 °C, a large number of macromolecular organics decompose from the solid phase and change into long-chain alkanes and macromolecular acids under pure N2 atmosphere. When the thermal desorption temperature was higher than 500 °C the pollutants in the soil were further decomposed into small molecular organics. In addition, the organics were transformed to CO2, SO2, NOx, and CO under 20% O2/N2 atmosphere when the temperature was above 500 °C.

Funder

the Science and Technology Project of State Grid Corporation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference27 articles.

1. Assessment of Smoke Pollution Caused by Wildfires in the Baikal Region (Russia)

2. Study on emission characteristics of transformer oil combustion;Gao;Fire Sci. Technol.,2021

3. Characterization of PAHs Trapped in the Soot from the Combustion of Various Mediterranean Species

4. Effects of nano-Fe2O3 and oxidants on soil remediation and health risk of polycyclic aromatic hydrocarbon in vegetable from contaminated farmland;Zhou;Environ. Pollut. Control.,2021

5. Thermal desorption of polychlorobiphenyls from contaminated soils and their hydrodechlorination using Pd- and Rh-supported catalysts

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3