Stratospheric Polar Vortex as an Important Link between the Lower Atmosphere Circulation and Solar Activity

Author:

Veretenenko SvetlanaORCID

Abstract

The stratospheric polar vortex is a large-scale cyclonic circulation that forms in a cold air mass in the polar region and extends from the middle troposphere to the stratosphere. The polar vortex is implicated in a variety of atmospheric processes, such as the formation of ozone holes, the North Atlantic and the Arctic Oscillations, variations in extratropical cyclone tracks, etc. The results presented in this work show that the vortex plays an important part in the mechanism of solar activity influence on lower atmosphere circulation, with variations in the vortex intensity being responsible for temporal variability in the correlation links observed between atmospheric characteristics and solar activity phenomena. In turn, the location of the vortex is favorable for the influence of ionization changes associated with charged particle fluxes (cosmic rays, auroral and radiation belt electrons) that affect the chemical composition and temperature regime of the polar atmosphere as well as its electric properties and cloudiness state. In this work, recent results concerning solar activity effects on the state of the stratospheric polar vortex as well as its role in solar–atmospheric links are discussed.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Solar influences on the Earth’s atmosphere: solved and unsolved questions;Frontiers in Astronomy and Space Sciences;2023-12-22

2. Solar Activity, Weather, and Climate: The Elusive Connection;Bulletin of the American Meteorological Society;2023-12

3. Russian Middle Atmosphere Research 2019–2022;Izvestiya, Atmospheric and Oceanic Physics;2023-12

4. Russian Studies of the Middle Atmosphere in 2019–2022;Известия Российской академии наук. Физика атмосферы и океана;2023-12-01

5. Possible Influence of Solar Cyclicity on Extratropical Cyclone Trajectories in the North Atlantic;Atmosphere;2023-08-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3