The Zonal Wind Intraseasonal Oscillation in the Exit Region of the East Asian Subtropical Westerly Jet in Winter and Its Thermodynamic Mechanism

Author:

Yao SuxiangORCID,Liu Yishan

Abstract

The six-hourly ERA-interim reanalysis data were used to analyze the intraseasonal oscillation (ISO) characteristics of the zonal wind in the exit region of the East Asian subtropical westerly jet (EAJ) during the winter (November to April). The results indicate that from East Asia to the North Pacific, the zonal wind in the upper troposphere shows significant 10–40-day oscillations, propagating eastward toward the jet exit region. The strength of the intraseasonal zonal wind anomaly increases from the lower troposphere to the upper troposphere, reaching a peak between 300 and 200 hPa. The zonal wind ISO in the jet exit area is closely related to the intraseasonal inverse temperature tendency between the north and south of the jet exit in the troposphere. In the acceleration (deceleration) phase of the intraseasonal west wind, the air temperature decreases (increases) in the north of the exit and increases (decreases) in the south of the exit. The intraseasonal temperature tendency is stronger in the north of the EAJ exit than that in the south. In the north of the EAJ exit, the intraseasonal temperature tendency is decided by the temperature advection, where the whole troposphere is controlled by the north wind in the west wind acceleration phase and controlled by the south wind in the west wind deceleration phase, so the intensity of temperature advection is strong. However, adiabatic heating plays a decisive role in affecting the temperature evolution in the south of the jet exit area, and the intraseasonal meridional wind is the opposite between the mid-upper troposphere and the lower troposphere, resulting in weak temperature advection and the weak temperature tendency. Therefore, although the zonal wind ISO in the jet exit area is the result of the joint action of the ISOs in different latitudes, the influence of mid-high latitudes is particularly important.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3