Attribution Analysis of Annual Precipitation Simulation Differences and Its Correction of CMIP5 Climate Models on the Chinese Mainland

Author:

Sun Xinyu,Wang YongdiORCID

Abstract

Using the self-organizing maps (SOM) method, we ranked and compared the simulation results of atmospheric circulation and precipitation for 32 global climate models (GCMs) in the Coupled Model Intercomparison Project Phase 5 (CMIP5) over China, and found that the ranking of the GCM’s ability to simulate the frequency of sea level pressure (SLP) weather patterns (WPs) was not correlated with the ranking of its ability to simulate annual precipitation WPs. Then, we attributed the precipitation simulation differences and identified three main components for the differences in the multi-model simulation results: internal variability, frequency differences, and the combined term of the two, with internal variability being the largest of the three components. These three deviations depend ultimately on two factors: the ability to simulate the frequency of WPs and the ability to simulate the corresponding average daily precipitation generated by these WPs, with the second factor playing a decisive role. Then, to address the drawback that the model ensemble results cannot be effectively improved when each single model that makes up the ensemble model is dry or wet, a solution was proposed to correct for the simulation differences: the nodal precipitation differences of each WP were corrected. After the correction of the simulation differences, the simulation capability of all the individual models was greatly improved, which increases our confidence in using the CMIP5 models for future weather patterns and precipitation simulation and forecasting.

Funder

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3