Spatio-Temporal Variability in Hydroclimate over the Upper Yangtze River Basin, China

Author:

Yang RutingORCID,Xing Bing

Abstract

As global warming produces dramatic climate changes, water management is facing increasingly serious challenges. Given to the process of climate change and its complex effects on watershed hydrology, this paper investigates the spatial and temporal variation characteristics of major climatic factors (i.e., precipitation and temperature) over the upper Yangtze River basin (UYRB), China. The statistical analyses are based on annual and seasonal scales during 1951–2020 with a recorded period of seven decades. The Mann–Kendall nonparametric test and R/S analysis are used to record the temporal trends (past and future) of climate variables; the Pettitt test, standard normal homogeneity test and Buishand test are used to detect the homogeneity in climate series. The sensitivities of the streamflow to climatic parameters are assessed at the watershed scale, especially considering the Three Gorges Dam’s (TGD) effect on changing runoff. The results of the study indicate that the annual precipitation of 29 out of 34 series indicate homogeneity, while 31 out of 34 annual mean temperature series show heterogeneity, with jump points around 1997 in the mean temperature of 20 sites. Detectable changes in precipitation were not observed during 1951–2020; however, the temperature increased significantly in the whole basin on annual and seasonal scales, except for several stations in the eastern part. The magnitude of increase in air temperature in high altitudes (Tibet Plateau) is higher than that in low altitudes (Sichuan Plain) over the last seven decades, and future temperatures continue to sharply increase in high altitudes. The TGD plays an important role in explaining the seasonal variations in streamflow at Yichang station, with streamflow experiencing a sharp increase in winter and spring (dry season) and a decrease in summer and autumn (rainy season) compared to the pre-TGD period. The streamflow variation at an annual scale is mainly regulated by climate fluctuation (variation in precipitation). During the last seven decades, increasing air temperature and decreases in rainfall and runoff signify reduced water resources availability, and the climate tends to be warmer and drier over the basin. The sensitivity of the streamflow to watershed precipitation is higher than that to temperature, with variation in annual rainfall explaining 71% of annual runoff variability.

Funder

Science and Technology Research Project of Chongqing Municipal Education Commission

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference95 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3