A Combined Linear–Nonlinear Short-Term Rainfall Forecast Method Using GNSS-Derived PWV

Author:

Ma Zengqi,Guo Guohe,Cai Min,Chen Xuewen,Li Wenjie,Zhang Liang

Abstract

Short-term rainfall forecast using GNSS-derived tropospheric parameters has gradually become a research hotspot in GNSS meteorology. Nevertheless, the occurrence of rainfall can be attributed to the impact of various weather factors. With only using tropospheric parameters retrieved from GNSS (such as ZTD or PWV) for linear forecast, it could be challenging to describe the process of rainfall occurrence accurately. Unlike traditional linear algorithms, machine learning can construct better the relationship between various meteorological parameters and rainfall. Therefore, a combined linear–nonlinear short-term rainfall forecast method is proposed in this paper. In this method, the PWV time series is first linearly fitted using least squares, and rainfall events are determined based on the PWV value, PWV variation, and PWV variation rate. Then, a support vector machine (SVM) is used to establish a nonlinear rainfall forecasting model using the PWV value, air temperature, air pressure, and rainfall. Finally, the previous two rainfall forecast methods are combined to obtain the final rainfall event. To evaluate the accuracy of the proposed method, experiments were conducted utilizing the temperature, pressure, and rainfall data from ERA5. The experimental results show that, compared to existing short-term rainfall forecast models, the proposed method could significantly lower the false alarm rate (FAR) of rainfall forecasts without compromising the true detection rate (TDR), which were 26.33% and 98.66%, respectively. In addition, the proposed method was verified using measured GNSS and meteorological data from Yunmao City, Guangdong, and the TDR and FAR of the verified results were 100% and 20.2%, respectively, which were proven to apply to actual rainfall forecasts.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference50 articles.

1. Bayesian network model for monthly rainfall forecast;Sharma;Proceedings of the 2015 IEEE International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN),2015

2. A spatial–temporal projection model for 10–30 day rainfall forecast in South China

3. Comparison of random forests and support vector machine for real-time radar-derived rainfall forecasting

4. GPS-Derived PWV for Rainfall Nowcasting in Tropical Region

5. Hourly Rainfall Forecast Model Using Supervised Learning Algorithm

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3