Suitability of Different Methods for Measuring Black Carbon Emissions from Marine Engines

Author:

Aakko-Saksa PäiviORCID,Kuittinen NiinaORCID,Murtonen Timo,Koponen Päivi,Aurela Minna,Järvinen Anssi,Teinilä Kimmo,Saarikoski Sanna,Barreira Luis M. F.,Salo LauraORCID,Karjalainen PanuORCID,Ortega Ismael K.,Delhaye David,Lehtoranta KatiORCID,Vesala Hannu,Jalava Pasi,Rönkkö Topi,Timonen HilkkaORCID

Abstract

Black carbon (BC) emissions intensify global warming and are linked to adverse health effects. The International Maritime Organization (IMO) considers the impact of BC emissions from international shipping. A prerequisite for the anticipated limits to BC emissions from marine engines is a reliable measurement method. The three candidate methods (photoacoustic spectroscopy (PAS), laser-induced incandescence (LII), and filter smoke number (FSN)) selected by the IMO were evaluated with extensive ship exhaust matrices obtained by different fuels, engines, and emission control devices. A few instruments targeted for atmospheric measurements were included as well. The BC concentrations were close to each other with the smoke meters (AVL 415S and 415SE), PAS (AVL MSS), LII (Artium-300), MAAP 5012, aethalometers (Magee AE-33 and AE-42), and EC (TOA). In most cases, the standard deviation between instruments was in the range of 5–15% at BC concentrations below 30 mg Sm−3. Some differences in the BC concentrations measured with these instruments were potentially related to the ratio of light-absorbing compounds to sulphates or to particle sizes and morphologies. In addition, calibrations, sampling, and correction of thermophoretic loss of BC explained differences in the BC results. However, overall differences in the BC results obtained with three candidate methods selected by the IMO were low despite challenging exhaust compositions from marine diesel engines. Findings will inform decision making on BC emission control from marine engines.

Funder

BUSINESS FINLAND

TRAFICOM

ACADEMY OF FINLAND

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference81 articles.

1. Arctic shipping emissions inventories and future scenarios

2. Emissions from Shipping in the Arctic from 2012–2016 and Emission projections for 2020, 2030 and 2050;Winther,2017

3. The dark side of aerosols

4. Greenhouse gas Emissions from Global Shipping, 2013–2015;Olmer,2017

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3