Comparison between Multi-Physics and Stochastic Approaches for the 20 July 2021 Henan Heavy Rainfall Case

Author:

Shao Duanzhou,Zhang Yu,Xu Jianjun,Zhang Hanbin,Chen Siqi,Tu ShifeiORCID

Abstract

In this study, three model perturbation schemes, the stochastically perturbed parameter scheme (SPP), stochastically perturbed physics tendency (SPPT), and multi-physics process parameterization (MP), were used to represent the model errors in the regional ensemble prediction systems (REPS). To study the effects of different model perturbation schemes on heavy rainfall forecasting, three sensitive experiments using three different combinations (EXP1: MP, EXP2: SPPT + SPP, and EXP3: MP + SPPT + SPP) of the model perturbation schemes were set up based on the Weather Research and Forecasting (WRF)-V4.2 model for a heavy rainfall case that occurred in Henan, China during 20–22 July 2021. The results show that the model perturbation schemes can provide forecast uncertainties for this heavy rainfall case. The stochastic physical perturbation method could improve the heavy rainfall forecast skill by approximately 5%, and EXP3 had better performance than EXP1 or EXP2. The spread-to-root mean square error ratios (spread/RMSE) of EXP3 were closer to 1 compared with those of the EXP1 and EXP2; particularly for the meridional wind above 10 m, the spread/RMSE was 0.94 for EXP3 and approximately 0.85 for EXP1 and EXP2. EXP3 exhibited better performance in Brier score verification. EXP3 had a 5% lower Brier score than EXP1 and EXP2, when the rainfall threshold was 25 mm. The growth of the initial ensemble variances of different model perturbation schemes were explored, and the results show that the perturbation energy of EXP3 developed faster, with a magnitude of 27.22 J/kg, whereas those of EXP1 and EXP2 were only 19.18 J/kg and 20.81 J/kg, respectively. The weak initial perturbation associated with the wind shear north of the heavy rainfall location can be easily developed by EXP3.

Funder

The National Natural Science Foundation of China

Guangdong Basic and Applied Basic Science Research Foundation

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference41 articles.

1. A study of the predictability of a 28-variable atmospheric model

2. Study of Mesoscale Intense Precipitation Weather Ensemble Forecasting Techniques https://oversea.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD0506&filename=2006083048.nh

3. Study of Mesoscale Model Uncertainty and Initial Value Perturbation https://oversea.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD2008&filename=2008125903.nh

4. Review of the Ensemble Prediction Using Stochastic Physics;Chen;Adv. Meteorol. Sci. Technol.,2021

5. The rationale behind the success of multi-model ensembles in seasonal forecasting-I.Basic concept;Hagedorn;Tellus,2005

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3