Urban Climate Risk Mitigation via Optimal Spatial Resource Allocation

Author:

Nevat IdoORCID,Mughal Muhammad OmerORCID

Abstract

Decision makers (DMs) who are involved in urban planning are often required to allocate finite resources (say, money) to improve outdoor thermal comfort (OTC) levels in a region (e.g., city, canton, country). In this paper, for the first time, we address the following two questions, which are directly related to this requirement: (1) How can the statistical properties of the spatial risk profile of an urban area from an OTC perspective be quantified, no matter which OTC index the DM chooses to use? (2) Given the risk profile, how much and where should the DM allocate the finite resources to improve the OTC levels? We answer these fundamental questions by developing a new and rigorous mathematical framework as well as a new class of models for spatial risk models. Our approach is based on methods from machine learning: first, a surrogate model of the OTC index that provides both accuracy and mathematical tractability is developed via regression analysis. Next, we incorporate the imperfect climate model and derive the statistical properties of the OTC index. We present the concept of spatio-temporal aggregate risk (STAR) measures and derive their statistical properties. Finally, building on our derivations, we develop a new algorithm for spatial resource allocation, which is useful for DMs and is based on modern portfolio theory. We implemented the tool and used it to illustrate its operation on a practical case of the large-scale area of Singapore using a WRF climate model.

Funder

National Research Foundation

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference54 articles.

1. Environmental Policy and Politics;Kraft,2017

2. Global Climate Change and Environmental Policy;Venkatramanan,2020

3. Managing Climate Risk;Obersteiner,2001

4. Adaptation investments: a resource allocation framework

5. Resource allocation models’ construction for the reduction of undesirable outputs based on DEA methods

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3