Intra-Seasonal and Intra-Annual Variation of the Latent Heat Flux Transfer Coefficient for a Freshwater Lake

Author:

Lükő Gabriella,Torma PéterORCID,Weidinger Tamás

Abstract

In the case of lakes, evaporation is one of the most significant losses of water and energy. Based on high-frequency eddy-covariance (EC) measurements between May and September of 2019, the offshore heat and water vapor exchanges are evaluated for the large (~600 km2) but shallow (~3.2 m deep) Lake Balaton (Transdanubian region, Hungary). The role of local driving forces of evaporation in different time scales (from 20 min to one month) is explored, such as water surface and air temperatures, humidity, atmospheric stability, net radiation, and energy budget components. EC-derived water vapor roughness lengths and transfer coefficients (Cq) show an apparent intra-seasonal variation. Different energy balance-based evaporation estimation methods (such as the Priestley-Taylor and the Penman-Monteith) confirm this observation. Furthermore, this has suggested the existence of an intra-annual variation in these parameters. This hypothesis is verified using ten years of water balance measurements, from which, as a first step, evaporation rates and, second, transfer coefficients are derived on a monthly scale. Cq is highly reduced in winter months (~1 × 10−3) compared to summer months (~2.5 × 10−3) and strongly correlated with net radiation. The application of time-varying Cq significantly increases the accuracy of evaporation estimation when the Monin-Obukhov similarity theory-based aerodynamic method is applied. The determination coefficient increases to 0.84 compared to 0.52 when a constant Cq is employed.

Funder

National Research, Development and Innovation Office

Ministry for Innovation and Technology

Ministry of Human Capacities

Government of Hungary

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3