Abstract
COVID-19, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is a very contagious disease that has killed many people worldwide. According to data from the World Health Organization (WHO), the spread of the disease appears to be slower in Africa. Although several studies have been published on the relationship between meteorological parameters and COVID-19 transmission, the effects of climate conditions on COVID-19 remain largely unexplored and without consensus. However, the transmission of COVID-19 and sensitivity to climate conditions are also not fully understood in Africa. Here, using available epidemiological data over 275 days (i.e., from 1 March to 30 November 2020) taken from the European Center for Disease Prevention and Control of the European Union database and daily data of surface air temperature specific humidity and water vapor from the National Center for Environmental Prediction (NCEP), this paper investigates the potential contribution of climate conditions on COVID-19 transmission over 16 selected countries throughout three climatic regions of Africa (i.e., Sahel, Maghreb, and Gulf of Guinea). The results highlight statistically significant inverse correlations between COVID-19 cases and temperature over the Maghreb and the Gulf of Guinea regions. In contrast, positive correlations are found over the Sahel area, especially in the central part, including Niger and Mali. Correlations with specific humidity and water vapor parameters display significant and positive values over the Sahelian and the Gulf of Guinea countries and negative values over the Maghreb countries. Then, the COVID-19 pandemic transmission is influenced differently across the three climatic regions: (i) cold and dry environmental conditions over the Maghreb; (ii) warm and humid conditions over the Sahel; and (iii) cold and humid conditions over the Gulf of Guinea. In addition, for all three climatic regions, even though the climate impact has been found to be significant, its effect appears to display a secondary role based on the explanatory power variance compared to non-climatic factors assumed to be dominated by socio-economic factors and early strong public health measures.
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献