Non-Stationarity of Aerosol Extinction Coefficient per Unit of Mass in Autumn and Winter in Chengdu, China

Author:

Yang MengORCID,Ni Changjian,Yang Yinshan,Fan Jin

Abstract

Based on hourly observation data from the aethalometer and GRIMM180 environment particle monitor as well as the simultaneous data of visibility (V), relative humidity (RH) and nitrogen dioxide (NO2) from October to December in 2017 in Chengdu, the corresponding time series of aerosol extinction coefficient per unit of mass is retrieved. The generalized additive models (GAMs) are adopted to analyze the non-stationarity of the time series of aerosol extinction coefficient per unit of mass and to explore the responses of the aerosol extinction coefficient per unit of mass to the aerosol component structure factors (ρBC/ρPM10, ρPM1/ρPM2.5, ρPM1~2.5/ρPM2.5 and ρPM2.5/ρPM10; ρ represents particle mass concentration) and RH. The results show that through the comparative analysis of stationary and non-stationary models, the time series of aerosol extinction coefficient per unit of mass in autumn and winter in Chengdu is non-stationary. In addition, the RH and aerosol component structure factors are all significant nonlinear covariates that affect the non-stationarity of the aerosol extinction coefficient per unit of mass. According to the influence of covariates, the sequence is as follows: RH > ρBC/ρPM10 > ρPM2.5/ρPM10 > ρPM1/ρPM2.5. At PM2.5 pollution concentration (ρPM2.5 > 75 μg m−3), according to the influence of covariates, the sequence is as follows: RH > ρPM1~2.5/ρPM2.5 > ρBC/ρPM10 > ρPM2.5/ρPM10. Moreover, the interaction between RH and aerosol component structure factors significantly affects the aerosol extinction coefficient per unit of mass. The condition of high RH, high ρPM2.5/ρPM10, high ρPM1/ρPM2.5 and low ρBC/ρPM10 has a synergistic amplification effect on the increase of the aerosol extinction coefficient per unit of mass. At PM2.5 pollution concentration, the synergistic effect of high RH, high ρPM2.5/ρPM10, high ρPM1~2.5/ρPM2.5 and low ρBC/ρPM10 is beneficial to the increase of the aerosol extinction coefficient per unit of mass.

Funder

the National Key R&D Program of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3