Variations in Sulfur and Nitrogen Oxidation Rates in Summer Aerosols from 2014 to 2020 in Wuhan, China

Author:

Zhao Jinhui,Ma Chiyuan,He Chao,Zhang Zhouxiang,Jiang Taotao,Tang Rui,Chen Qiang

Abstract

To date, research regarding the changes of the sulfur and nitrogen rates in Wuhan during the summer is limited. In this study, we analyzed the air quality in Wuhan, China, using water-soluble ion, gaseous precursor, and weather data. A Spearman correlation analysis was then performed to investigate the temporal changes in air quality characteristics and their driving factors to provide a reference for air pollution control in Wuhan. The results indicate that SO2 in the atmosphere at Wuhan undergoes secondary conversion and photo-oxidation, and the conversion degree of SO2 is higher than that of NO2. During the summers of 2016 and 2017, secondary inorganic atmospheric pollution was more severe than during other years. The fewest oxidation days occurred in summer 2020 (11 days), followed by the summers of 2017 and 2014 (25 and 27 days, respectively). During the study period, ion neutralization was the strongest in summer 2015 and the weakest in August 2020. The aerosols in Wuhan were mostly acidic and NH4+ was an important neutralizing component. The neutralization factors of all cations showed little change in 2015. K+, Mg2+, and Ca2+ level changes were the highest in 2017 and 2020. At low temperature, high humidity, and low wind speed conditions, SO2 and NO2 were more easily converted into SO42− and NO3−.

Funder

National Natural Science Foundation of China

national large-scale innovation project

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference39 articles.

1. The relationship between air pollution and human health;Zhang;Shanxi Med. J.,2021

2. Does Air Pollution Affect the Transmission of COVID-19? Evidence from China;Chen;China J. Econ.,2021

3. Effects of meteorological factors and air pollutants on the incidence of COVID-19 in South Korea

4. The spatial—Temporal characteristics and influencing factors of PM2.5 in Wuhan metropolitan area;Liu;Environ. Prot. Sci.,2019

5. Analysis on the characteristics and influencing factors of air quality of urban agglomeration in the middle reaches of the Yangtze River in 2016 to 2019;Guo;Ecol. Environ. Sci.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3