Abstract
Wind shear at low altitudes represents a potential hazard to landing aircraft. Based on two wind lidar data sets of one year, the occurrence of low-level jets (LLJs), the vertical wind shear and the rotation of the wind direction were analysed. The lidar system was located at the sites of Braunschweig in the North German Plain, Germany, and Clausthal-Zellerfeld in the low mountain range Harz, Germany. The observed wind shear gradients between the altitude of 40 m and the altitude of the maximum wind speed was in the range of −0.23 s−1 to +0.20 s−1. The rotation of the wind direction with altitude occurred both in clockwise and anticlockwise direction. The ratio of clockwise versus anticlockwise occurrence of directional shear was 4:1 for Braunschweig and 3:1 for Clausthal-Zellerfeld. The observed wind shear gradients were compared to values for hazard potential of different levels for a typical aircraft. Although the LLJ was not hazardous for manned aircraft in any observed case, the awareness of LLJ helps to reduce the pilot’s workload and possible pilot-introduced oscillations caused as a result of the wind shear and aircraft characteristics. In contrast to manned aviation, the value of changes in wind speed and direction during LLJ conditions can cause significant risks for unmanned aerial system operations with less than 25 kg of take-off weight. This is a result of the lower airspeed-wind-speed ratio and the flight control and flight planning.
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Reference40 articles.
1. Differentiating between Types of Wind Shear in Aviation Forecasting, National Weather Digesthttp://nwafiles.nwas.org/digest/papers/2000/Vol24No3/Pg39-Arkell.pdf
2. Manual on Low-Level Wind Shear,2005
3. An Introduction to Boundary Layer Meteorology;Stull,1988
4. Comparison of Wind Lidar Data and Numerical Simulations of the Low-Level Jet at a Grassland Site
5. The diurnal cycle of lower boundary-layer wind in the West African monsoon
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献