Transmission Risk Prediction and Evaluation of Mountain-Type Zoonotic Visceral Leishmaniasis in China Based on Climatic and Environmental Variables

Author:

Hao Yuwan,Luo Zhuowei,Zhao Jian,Gong Yanfeng,Li Yuanyuan,Zhu Zelin,Tian Tian,Wang Qiang,Zhang Yi,Zhou Zhengbin,Hu ZengyunORCID,Li ShizhuORCID

Abstract

With global warming and socioeconomic developments, there is a tendency toward the emergence and spread of mountain-type zoonotic visceral leishmaniasis (MT-ZVL) in China. Timely identification of the transmission risk and spread of MT-ZVL is, therefore, of great significance for effectively interrupting the spread of MT-ZVL and eliminating the disease. In this study, 26 environmental variables—namely, climatic, geographical, and 2 socioeconomic indicators were collected from regions where MT-ZVL patients were detected during the period from 2019 to 2021, to create 10 ecological niche models. The performance of these ecological niche models was evaluated using the area under the receiver-operating characteristic curve (AUC) and true skill statistic (TSS), and ensemble models were created to predict the transmission risk of MT-ZVL in China. All ten ecological niche models were effective at predicting the transmission risk of MT-ZVL in China, and there were significant differences in the mean AUC (H = 33.311, p < 0.05) and TSS values among these ten models (H = 26.344, p < 0.05). The random forest, maximum entropy, generalized boosted, and multivariate adaptive regression splines showed high performance at predicting the transmission risk of MT-ZVL (AUC > 0.95, TSS > 0.85). Ensemble models predicted a transmission risk of MT-ZVL in the provinces of Shanxi, Shaanxi, Henan, Gansu, Sichuan, and Hebei, which was centered in Shanxi Province and presented high spatial clustering characteristics. Multiple ensemble ecological niche models created based on climatic and environmental variables are effective at predicting the transmission risk of MT-ZVL in China. This risk is centered in Shanxi Province and tends towards gradual radiation dispersion to surrounding regions. Our results provide insights into MT-ZVL surveillance in regions at high risk of MT-ZVL.

Funder

the National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3