Learning Calibration Functions on the Fly: Hybrid Batch Online Stacking Ensembles for the Calibration of Low-Cost Air Quality Sensor Networks in the Presence of Concept Drift

Author:

Bagkis Evangelos,Kassandros Theodosios,Karatzas KostasORCID

Abstract

Deployment of an air quality low-cost sensor network (AQLCSN), with proper calibration of low-cost sensors (LCS), offers the potential to substantially increase the ability to monitor air pollution. However, to leverage this potential, several drawbacks must be ameliorated, thus the calibration of such sensors is becoming an essential component in their use. Commonly, calibration takes place in a laboratory environment using gasses of known composition to measure the response and a linear calibration is often reached. On site calibration is a promising complementary technique where an LCS and a reference instrument are collocated with the former being calibrated to match the measurements of the latter. In a scenario where an AQLCSN is already operational, both calibration approaches are resource and time demanding procedures to be implemented as frequently repeated actions. Furthermore, sensors are sensitive to the local meteorology and adaptation is a slow process making relocation a complex and expensive option. We concentrate our efforts in keeping the LCS positions fixed and propose to blend a genetic algorithm (GA) with a hybrid stacking (HS) ensemble into the GAHS framework. GAHS employs a combination of batch machine learning algorithms and regularly updated online machine learning calibration function(s) for the whole network when a small number of reference instruments are present. Furthermore, we introduce the concept of spatial online learning to achieve better spatial generalization. The frameworks are tested for the case of Thessaloniki where a total of 33 devices are installed. The AQLCSN is calibrated on the basis of on-site matching with high quality observations from three reference station measurements. The O3 LCS are successfully calibrated for 8–10 months and the PM10 LCS calibration is evaluated for 13–24 months showing a strong seasonal dependence on their ability to correctly capture the pollution levels.

Funder

European Union

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference55 articles.

1. Review of developments in air quality modelling and air quality dispersion models

2. Fusion of meteorological and air quality data extracted from the web for personalized environmental information services

3. End-user perspective of low-cost sensors for outdoor air pollution monitoring

4. UIA HOPE Helsinki Air Quality Digital Twinhttps://ilmanlaatu.eu/wp-content/uploads/UIA-HOPE-Helsinki-Air-Quality-Digital-Twin-20201029.pdf

5. World Health Statistics 2021: Monitoring Health for the SDGs, Sustainable Development Goals. License: CC BY-NC-SA 3.0 IGOhttps://apps.who.int/iris/bitstream/handle/10665/342703/9789240027053-eng.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3