Application of Global Environmental Multiscale (GEM) Numerical Weather Prediction (NWP) Model for Hydrological Modeling in Mountainous Environment

Author:

Gilewski PawełORCID

Abstract

As the world is changing, mainly due to climate change, extreme events such as floods and droughts are becoming more frequent and severe. Considering this, the predictive modeling of flow in small mountain catchments that are particularly vulnerable to flooding is critical. Rainfall data sources such as rain gauges, meteorological radars, and satellites provide data to the hydrological model with a lag. Only numerical weather predictions can achieve this in advance, but their estimates are often subject to considerable uncertainty. This article aims to verify whether Global Environmental Multiscale numerical precipitation prediction can be successfully applied for event-based rainfall–runoff hydrological modeling. These data were verified for use in two aspects: the flow modeling and determination of antecedent moisture conditions. The results indicate that GEM data can be satisfactorily used for hydrological modeling, and particularly good simulation results are obtained when significant rainfall occurs. In addition, these data can be used to correctly estimate the AMC groups for each sub-catchment in advance, which is one of the key elements flowing into the amount of projected outflow in the catchment. It is worth noting that, according to the literature review conducted by the article’s author, this is the first published attempt to use GEM data directly in applied hydrological applications.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference41 articles.

1. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2014

2. High resolution rainfall measurements by radar for very small basins: the sampling problem reexamined

3. Rainfall-Runoff Modelling: The Primer;Beven,2012

4. THE PHYSICAL BASIS OF LONG-RANGE WEATHER FORECASTS1

5. Das Problem der Wettervorhersage, betrachtet vom Standpunkt der Physik und Mechanik;Bjerkenes;Meteorol. Z.,1904

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3