Case Study of Mesoscale Precipitation Areas within the Comma Head of an Extratropical Cyclone

Author:

Zhao Yu,Lan Xin,Li Shuling,Yang Chengfang

Abstract

On 12–13 February 2016, a record-breaking rain–snow event during the passage of an extratropical cyclone occurred in Shandong Province, China, in which the 24 h precipitation totals at 48 of 123 national meteorological stations in Shandong Province broke their historical records for the month of February, and a further 25 stations recorded their second-largest February totals. This paper investigates the evolution of the mesoscale precipitation areas and the mechanisms responsible for the formation, organization, and maintenance of the mesoscale precipitation areas, using FY-2G satellite data, Doppler radar observations, and a Weather Research and Forecasting (WRF) model numerical simulation at 4 km grid spacing. The main results show that the comma head cloud of the cyclone developed from four echo strips. Intense precipitation was related to the mesoscale elongated precipitation areas (EPAs) of reflectivity >30 dBZ within the stratiform clouds. The formation and development of the EPAs coincided with the activities of a low-level shear line and an associated increase in frontogenesis. The simulated EPAs occurred in an environment of conditional instability (CI), inertial instability (II), and conditional symmetric instability (CSI). In the initial stage of the elongated rainfall areas (ERAs), rainfall was initiated by the frontal forcing in the presence of elevated CI, and II was generated by upright convection. During the development stage of the ERAs, the CI was absent, and condensational heating was enhanced. II occurred in the absence of upright convection, and it seems likely that the presence of II is a diabatic signature of the precipitation itself. Upper-level II intensified the convective systems by enhancing outflow aloft, and II caused the ERAs to organize. Thus, II played an important role in the organization and maintenance of the ERAs. The frontogenesis provided the dynamic condition for the release of the instability. Enhanced CSI and II intensified slantwise convection, and combining with enhanced frontogenesis, intensified the ERAs. The echo, ascent, and frontogenesis in snowfall areas were weaker than those in rainfall areas.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference61 articles.

1. Analysis of the cloud characteristic and the mechanism of an extreme rainfall-snowfall event associated with cyclones over Changjiang-Huaihe River basin;Zhao;Plateau Meteorol.,2018

2. Book of Disaster Weather Forecasting Technology in Shandong Province;Yan,2014

3. Analysis on formation mechanism of rare ‘Thundersnow’ phenomenon in Shandong on 28 February 2010;Zheng;Plateau Meteor.,2012

4. Climatic characteristics of regional snowstorm from 1960 to 2009 in Liaoning province;Yan;J. Meteorol. Environ.,2012

5. Statistical characteristics of the northward extratropical cyclone snowstorm affecting Northeast China;Fu;Plateau Meteorol.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3