In Situ Observations of Wind Turbines Wakes with Unmanned Aerial Vehicle BOREAL within the MOMEMTA Project

Author:

Alaoui-Sosse SaraORCID,Durand Pierre,Médina Patrice

Abstract

The MOMENTA project combines in situ and remote sensing observations, wind tunnel experiments, and numerical modeling to improve the knowledge of wake structure in wind farms in order to model its impact on the wind turbines and to optimize wind farm layout. In this context, we present the results of a first campaign conducted with a BOREAL unmanned aerial vehicle (UAV) designed to measure the three wind components with a horizontal resolution as fine as 3 m. The observations were performed at a wind farm where six turbines were installed. Despite the strong restrictions imposed by air traffic control authorities, we were able to document the wake area of two turbines during two flights in April 2021. The flight patterns consisted of horizontal racetracks with various orientations performed at different distances from the wind turbines; thus, horizontal wind speed fields were built in which the wind reduction area in the wake is clearly displayed. On a specific day, we observed an overspeed area between the individual wakes of two wind turbines, likely resulting from the cumulative effect of the wakes generated behind two successive rows of turbines. This study demonstrates the potential of BOREAL to document turbine wakes.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference36 articles.

1. GWEC-Global-Wind-Report-2021https://gwec.net/wp-content/uploads/2021/03/GWEC-Global-Wind-Report-2021.pdf

2. Wind-Turbine and Wind-Farm Flows: A Review

3. Wake Structure Measurements at the Mod-2 Cluster Test Facility at Goodnoe Hills;Lissaman,1983

4. Characterisation of Single Wind Turbine Wakes with Static and Scanning WINTWEX-W LiDAR Data

5. Coupling Doppler radar-derived wind maps with operational turbine data to document wind farm complex flows

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3