Machine Learning to Predict Area Fugitive Emission Fluxes of GHGs from Open-Pit Mines

Author:

Kia Seyedahmad,Nambiar Manoj K.ORCID,Thé Jesse,Gharabaghi BahramORCID,Aliabadi Amir A.ORCID

Abstract

Greenhouse gas (GHG) emissions from open-pit mines pose a global climate challenge, which necessitates appropriate quantification to support effective mitigation measures. This study considers the area-fugitive methane advective flux (as a proxy for emission flux) released from a tailings pond and two open-pit mines, denominated “old” and “new”, within a facility in northern Canada. To estimate the emission fluxes of methane from these sources, this research employed near-surface observations and modeling using the weather research and forecasting (WRF) passive tracer dispersion method. Various machine learning (ML) methods were trained and tested on these data for the operational forecasting of emissions. Predicted emission fluxes and meteorological variables from the WRF model were used as training and input datasets for ML algorithms. A series of 10 ML algorithms were evaluated. The four models that generated the most accurate forecasts were selected. These ML models are the multi-layer perception (MLP) artificial neural network, the gradient boosting (GBR), XGBOOST (XGB), and support vector machines (SVM). Overall, the simulations predicted the emission fluxes with R2 (-) values higher than 0.8 (-). Considering the bias (Tonnes h−1), the ML predicted the emission fluxes within 6.3%, 3.3%, and 0.3% of WRF predictions for the old mine, new mine, and the pond, respectively.

Funder

Natural Sciences and Engineering Research Council

Ontario Centres of Excellence

Emissions Reduction Alberta

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3