The Influence of Solar Activity on Snow Cover over the Qinghai–Tibet Plateau and Its Mechanism Analysis

Author:

Song YanORCID,Li Zhicai,Zhou Yaqing,Bi Xunqiang,Sun Biyun,Xiao Tiangui,Suo LinORCID,Zhang Wei,Xiao ZiniuORCID,Wang Chunzhu

Abstract

Using global ocean vertical temperature anomaly data, we identified that a significant response of the sea temperature anomaly (STA) to the solar radio flux (SRF) exists. We found that the STA exhibited a significant correlation with Asian summer and winter precipitation, among which the response from the Qinghai–Tibet Plateau (the QTP) was particularly noticeable. Based on NCEP/NCAR reanalysis data, the latent heat flux (LHF) anomaly, which plays a key role in winter precipitation in China, especially over the QTP, showed a significant response to the SRF in the Pacific. The results demonstrated the bottom-up mechanism of impact of solar activity (SA) on the plateau snow through sea–air interaction. Meanwhile, a top-down mechanism was also present. When the SRF was high, the stratospheric temperature in the low and mid-latitudes increased and the temperature gradient pointed to the pole to strengthen the westerly wind in the mid-latitudes. The EP flux showed that atmospheric long waves in the high altitudes propagated downward from the stratosphere to the troposphere. A westerly (easterly) wind anomaly occurred in the south (north) of the QTP at 500 hPa and the snowfall rate over the QTP tended to increase. When the SRF was low, the situation was the opposite, and the snowfall rate tended to decrease. The model results confirmed that when total solar irradiance (TSI) became stronger (weaker), both of the solar radiation fluxes at the top of the atmosphere and the surface temperature over the QTP increased (decreased), the vertical updraft intensified (weakened), and the snowfall rate tended to increase (decrease) accordingly. These conclusions are helpful to deepen the understanding of SA’s influence on the snow cover over the QTP.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference57 articles.

1. The Sun, Weather and Climate;Herman,1978

2. Observations tending to investigate the nature of the Sun, in order to find the causes or symptoms of its variable emission of light and heat: With remarks on the use that may possibly be drawn from solar observations;Herschel;Philos. Trans. R. Soc. Lond.,1801

3. A Possible Mechanism for the Production of Sun-Weather Correlations

4. Possible effects of atmospheric teleconnections and solar variability on tropospheric and stratospheric temperatures in the Northern Hemisphere

5. The Impact of Solar Variability on Climate

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3