Hydrogen Sulfide Emission Properties from Two Large Landfills in New York State

Author:

Catena Alexandra M.,Zhang Jie,Commane Roisin,Murray Lee T.,Schwab Margaret J.ORCID,Leibensperger Eric M.ORCID,Marto Joseph,Smith Mackenzie L.,Schwab James J.ORCID

Abstract

Landfills are a source of malodors, greenhouse gases, harmful pollutants, pests, noise, and litter. To reduce their impact on neighboring communities, landfill facilities and the policies they follow must reduce emissions of trace gases such as hydrogen sulfide (H2S) and methane (CH4). However, a comprehensive understanding of the spatial variability of both pollutants at landfills should first be established to obtain a clear picture of emissions at landfills. This study measured the mixing ratios of H2S and CH4 at two landfills in New York State (Fresh Kills Landfill and Seneca Meadows Landfill) in November 2021 using laser-based methods deployed in a mobile lab. H2S emission fluxes were estimated based on a mass balance calculation. The highest mixing ratios of both H2S and CH4 were measured at Fresh Kills Landfill, at up to 7 parts per billion (ppb) and ~140 parts per million (ppm), respectively, yet these values resulted in a low ΔH2S/ΔCH4 ratio, at approximately 5.2 ± 2.6 × 10−5 mol mol−1 and a H2S emission flux of 0.02 ± 0.01 mg m−2 day−1. The highest ΔH2S/ΔCH4 ratio was observed at the Seneca Meadows Landfill at 8.6 ± 4.3 × 10−4 mol mol−1 and yielded a H2S emission flux estimate of 17.7 ± 12.9 mg m−2-day−1. The variability in mixing ratios and ΔH2S/ΔCH4 ratios measured at the landfills can be attributed to various factors, including facility operations and design, landfill age, meteorology, types of waste, and pH levels, but further multiday measurements are needed at each landfill to improve emission estimates and determine a more accurate and resolute reasoning behind these variations.

Funder

New York State Energy Research and Development Authority

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3