Abstract
The ventilation performance of air shafts is important to the air quality of subway tunnels, but there is no unified evaluation index of ventilation performance. In this paper, the air shafts at different locations in subway tunnels were taken as research objects, and the wind speed as well as the particulate matter concentration of each air shaft was tested. The effective ventilation volume and PM2.5 discharge efficiency of the air shafts were defined to evaluate the ventilation performance. It was found that on average, during the subway train service, the station air shaft on the train-arriving side can discharge 2050 m3 of dirty air in the tunnels and inhale 218 m3 of fresh air from the outside environment, while the station air shaft on the train-leaving side can absorb 2430 m3 of fresh air but can hardly effectively discharge dirty air; meanwhile, the middle air shaft can not only effectively exhaust 1519 m3 of dirty air but can also absorb 7572 m3 of fresh air. In addition, the middle air shaft has better ventilation performance if its inner opening is set on the top rather than on the side of the tunnel. The PM2.5 discharge efficiency of the station air shaft on the train-arriving side is 52.0~62.8%, higher than that of the middle air shaft of which the value is 26.8~40.7%. This research can provide guidance for ventilation performance evaluation of subway air shafts and provide a reference for subway tunnel air shaft location design.
Subject
Atmospheric Science,Environmental Science (miscellaneous)