Cognitive Factories: Modeling Situated Entropy in Physical Work Carried Out by Humans and Robots

Author:

Fox Stephen,Kotelba AdrianORCID,Niskanen Ilkka

Abstract

Entropy in factories is situated. For example, there can be numerous different ways of picking, orientating, and placing physical components during assembly work. Physical components can be redesigned to increase the Information Gain they provide and so reduce situated entropy in assembly work. Also, situated entropy is affected by the extent of knowledge of those doing the work. For example, work can be done by knowledgeable experts or by beginners who lack knowledge about physical components, etc. The number of different ways that work can be done and the knowledge of the worker combine to affect cognitive load. Thus, situated entropy in factories relates to situated cognition within which knowledge is bound to physical contexts and knowing is inseparable from doing. In this paper, six contributions are provided for modelling situated entropy in factories. First, theoretical frameworks are brought together to provide a conceptual framework for modelling. Second, the conceptual framework is related to physical production using practical examples. Third, Information Theory mathematics is applied to the examples and a preliminary methodology in presented for modelling in practice. Fourth, physical artefacts in factory production are reframed as carriers of Information Gain and situated entropy, which may or may not combine as Net Information Gain. Fifth, situated entropy is related to different types of cognitive factories that involve different levels of uncertainty in production operations. Sixth, the need to measure Net Information Gain in the introduction of new technologies for embodied and extended cognition is discussed in relation to a taxonomy for distributed cognition situated in factory production. Overall, modelling of situated entropy is introduced as an opportunity for improving the planning and control of factories that deploy human cognition and cognitive technologies including assembly robotics.

Funder

VTT

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference96 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3