Rapid Production Biofloc by Inoculating Chlorella pyrenoidosa in a Separate Way

Author:

Chen Yang1,Fu Zhichao1,Shen Zhenyi1,Zhang Rongfei1ORCID,Zhao Jianhua1,Zhang Yixiang1,Xu Qiyou1

Affiliation:

1. Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou 313002, China

Abstract

Microalgae play an important role in the formation of biofloc. To demonstrate the feasibility of Chlorella pyrenoidosa in biofloc formation, an experiment was performed with a simple random design consisting of five inoculation levels (in triplicate) of C. pyrenoidosa (0, 1 × 108, 1 × 109, 5 × 109, and 1 × 1010 cells·L−1) in the biofloc system. All treatments kept a C:N ratio of approximately 15:1. This study observed the effects of different initial concentrations of C. pyrenoidosa on biofloc formation, water quality and bacterial community in biofloc systems. The results indicated that C. pyrenoidosa had the ability to enhance biofloc development, especially when the C. pyrenoidosa initial concentration reached 5~10 × 109 cells·L−1. Too high or too low a concentration of C. pyrenoidosa will adversely affect the formation of biofloc. The effect of C. pyrenoidosa addition on water quality (TAN, NO2−-N, and NO3−-N) was not significant in the final stage. The inoculation of C. pyrenoidosa decreased the species richness and diversity of the bacterial community but increased the domination of Proteobacteria and Bacteroidota in the biofloc system, especially the order of Rhizobiales. The addition of C. pyrenoidosa could maintain water quality by increasing the proportion of several denitrifying bacteria, including Flavobacterium, Chryseobacterium, Pseudomonas, Brevundimonas, Xanthobacter, etc. These above dominant denitrifying bacteria in the biofloc system could play a major role in reducing the concentration of NO2−-N and NO3−-N. So, we recommended the reasonable concentration is 5~10 × 109 cells·L−1 if C. pyrenoidosa is used to rapidly produce biofloc.

Funder

Public Welfare Research Key Project of Huzhou City

Basic Public Welfare Research Project of Zhejiang Province

Natural Science Foundation of Zhejiang Province

Innovation and Entrepreneurship Training Project for College Students

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3