Calibration and Evaluation of the WRF-Hydro Model in Simulating the Streamflow over the Arid Regions of Northwest China: A Case Study in Kaidu River Basin

Author:

Yu Entao12ORCID,Liu Xiaoyan13,Li Jiawei4ORCID,Tao Hui5ORCID

Affiliation:

1. Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

2. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China

3. University of Chinese Academy of Sciences, Beijing 101408, China

4. Key Laboratory of Regional Climate-Environment for Temperate East Asia (RCE-TEA), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

5. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

Abstract

In this study, the hydrological system of the Weather Research and Forecasting model (WRF-Hydro) is applied to simulate the streamflow at the Kaidu River Basin, which is vital to the ecological system in the lower reaches of the Tarim River in Northwest China. The offline WRF-Hydro model is coupled with the Noah multi-parameterization land surface model (Noah-MP) and is forced by the China Meteorological Forcing Dataset (CMFD), with the grid spacing of the hydrological routing modules being 250 m. A 3-year period (1983–1985) is used for calibration and a 17-year period (1986–2002) for the evaluation. Several key parameters of WRF-Hydro and four Noah-MP parameterization options are calibrated, and the performance of WRF-Hydro with the optimized model setting is evaluated using the daily streamflow observations. The results indicate that WRF-Hydro can reproduce the observed streamflow reasonably, with underestimation of the streamflow peaks. The simulated streamflow is sensitive to the parameters of bexp, dksat, smcmax, REFKDT, slope, OVROUGHRTAC and mann in the Kaidu River Basin. At the same time, the parameterization options of Noah-MP also have a large influence on the streamflow simulation. The WRF-Hydro model with optimized model settings can achieve correlation coefficient (CC) and Nash efficiency coefficient (NSE) statistical scores of 0.78 and 0.61, respectively, for the calibration period. Meanwhile, for the evaluation period, the scores are 0.7 and 0.50, respectively. This study indicates the importance of applying the physical-based WRF-Hydro model over Northwest China and provides a reference for the nearby regions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3