Efficient Expression of Xylanase by Codon Optimization and Its Effects on the Growth Performance and Carcass Characteristics of Broiler

Author:

Hu Hong,Dai Sifa,Wen Aiyou,Bai Xi

Abstract

The aim of the present study was to improve the expression level of Trichoderma reesei xylanase (XynB) in Pichia pastoris through a codon optimization strategy and evaluate its effects on the growth performance and carcass characteristics of broiler. According to the codon bias of Pichia genome, the XynB gene from T. reesei was optimized and synthesized by whole gene assembly to improve its expression level in P. pastoris. Approximately 180 target mutations were successfully introduced into natural XynB. The maximum activity of xylanase (optiXynB) secreted by P. pastoris pPICZaA-optiXynB was 1299 U/mL after 96 h induction. Purified recombinant optiXynB had the molecular weight of 24 kDa. The optiXynB presented highest activity in pH 5.0 and 50 °C. The recombinase was highly specific towards birchwood xylan, beechwood xylan, and oat-spelt xylan. In the broiler experiment, a total of 200 Arbor Acre broilers (one day old) were randomly allocated into four groups fed with basal diets containing 0 (control group), 500, 1000, and 1500 IU/kg optiXynB. Dietary 1000 and 1500 IU/kg optiXynB significantly increased (p < 0.05) final weight and body weight gain; dietary 500, 1000, and 1500 IU/kg optiXynB significantly increased (p < 0.05) pre-evisceration weight, dressed percentage, and eviscerated weight compared with the control group. Inclusion of optiXynB in broiler diets linearly increased final weight, body weight gain, breast muscle weight and leg muscle weight, but linearly decreased feed conversion rate (p < 0.05). Furthermore, inclusion of optiXynB in broiler diets linearly and quadratically increased pre-evisceration weight, dressed percentage, and eviscerated weight (p < 0.05). The recombinant optiXynB from P. pastoris pPICZaA-optiXynB was beneficial in improving growth performance and carcass characteristics of broilers.

Funder

Anhui Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3