Artificial Intelligence in Photovoltaic Fault Identification and Diagnosis: A Systematic Review

Author:

Islam Mahmudul1ORCID,Rashel Masud Rana2ORCID,Ahmed Md Tofael2,Islam A. K. M. Kamrul3,Tlemçani Mouhaydine2

Affiliation:

1. Department of Computer Science and Engineering, Independent University, Dhaka 1229, Bangladesh

2. Instrumentation and Control Laboratory, Department of Mechatronics Engineering, University of Évora, 7000-671 Évora, Portugal

3. College of Engineering, North Carolina A&T State University, Greensboro, NC 27411, USA

Abstract

Photovoltaic (PV) fault detection is crucial because undetected PV faults can lead to significant energy losses, with some cases experiencing losses of up to 10%. The efficiency of PV systems depends upon the reliable detection and diagnosis of faults. The integration of Artificial Intelligence (AI) techniques has been a growing trend in addressing these issues. The goal of this systematic review is to offer a comprehensive overview of the recent advancements in AI-based methodologies for PV fault detection, consolidating the key findings from 31 research papers. An initial pool of 142 papers were identified, from which 31 were selected for in-depth review following the PRISMA guidelines. The title, objective, methods, and findings of each paper were analyzed, with a focus on machine learning (ML) and deep learning (DL) approaches. ML and DL are particularly suitable for PV fault detection because of their capacity to process and analyze large amounts of data to identify complex patterns and anomalies. This study identified several AI techniques used for fault detection in PV systems, ranging from classical ML methods like k-nearest neighbor (KNN) and random forest to more advanced deep learning models such as Convolutional Neural Networks (CNNs). Quantum circuits and infrared imagery were also explored as potential solutions. The analysis found that DL models, in general, outperformed traditional ML models in accuracy and efficiency. This study shows that AI methodologies have evolved and been increasingly applied in PV fault detection. The integration of AI in PV fault detection offers high accuracy and effectiveness. After reviewing these studies, we proposed an Artificial Neural Network (ANN)-based method for PV fault detection and classification.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3