Simulation Research on the Optimization of Domestic Heat Pump Water Heater Condensers

Author:

Han Yang1,Feng Rong1,Xiao Taiyang1,Guo Machao1,Wu Jiahui1,Cui Hong1

Affiliation:

1. School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong 723001, China

Abstract

To improve the heat transfer coefficient of a condenser, this paper proposes using a fin-tube condenser to replace a smooth-tube condenser in a domestic heat pump water heater. The finite element method is used to analyze the heat transfer coefficient of fin-tube condensers with different design parameters. By comparing the results of experiments with those obtained using CFD methods, it has been determined that the CFD method used in this study is feasible. Simulation results showed that the heat transfer coefficient enhanced clearly. The total thermal resistance of the fin-tube condenser decreased by 7% through increasing fin thickness. The total thermal resistance of the fin-tube condenser increased by 1–1.3% when fin spacing was increased. The heat transfer coefficient decreased severely and the maximum total thermal resistance of the fin-tube condenser increased by 8.7% with increasing fin height. In 600 s, when the fin spacing, fin height, fin thickness and inner diameter were 14 mm, 12.5 mm, 1.2 mm and 22.5 mm, respectively, compared to the smooth-tube condenser, the fin-tube condenser could increase the final water temperature by 18.37%, and the heat transfer coefficient would increase by about 95%. This research could provide a low-cost way to improve the heat transfer coefficient of condensers in domestic heat pump water heaters.

Funder

National Natural Science Foundation of China

Natural Science Basis Research Plan in Shaanxi Province of China

Scientific research plan projects of Shaanxi Education Department

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3