Dielectric Breakdown Strength of PDMS Elastomers after Mechanical Cycling

Author:

Taine Emmanuel12ORCID,Andritsch Thomas1ORCID,Saeedi Istebreq A.1,Morshuis Peter H. F.3

Affiliation:

1. The Tony Davies High Voltage Laboratory, University of Southampton, Southampton SO17 1BJ, UK

2. R&D Laboratory, SBM Offshore, 06510 Le Broc, France

3. Solid Dielectric Solutions, 2311 SG Leiden, The Netherlands

Abstract

PDMS-based composites such as silicone elastomers are commonly found in high-voltage engineering, especially in outdoor insulation as coatings or structural elements or at interfaces between network elements, such as cable sealing ends (CSE). They are also promising prospects for dielectric elastomer generators (DEG), which are retrieving electrostatic energy from large strain amplitudes. The upper limit of energy conversion from these transducers is determined by the dielectric breakdown strength (DBS). Therefore, developing reliable systems that operate under high electric fields and variable repeated strains requires a thorough understanding of the mechanisms behind electrical breakdown and its coupling to mechanical cycling. In this study, the effect of Mullins damage and mechanical fatigue on silicone elastomers has been investigated. An electro-mechanical instability model that considers cyclic softening allows for predicting the evolution of the breakdown strength depending on the loading history. The results highlight the importance of the “first cycle,” where up to a 30% reduction in the mean DBS was measured. However, subsequent mechanical fatigue only marginally contributes to the degradation, which is a promising perspective for the long-term performance of any silicone elastomer as long as the precise impact of the first cycle is known.

Funder

SBM Offshore

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The rate dependence of the dielectric strength of dielectric elastomers;International Journal of Smart and Nano Materials;2024-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3