Enhancement of Condenser Performance in Vapor Absorption Refrigeration Systems Operating in Arid Climatic Zones—Selection of Best Option

Author:

Kaneesamkandi Zakariya1,Almujahid Abdulaziz1,Salim Basharat1,Sayeed Abdul1ORCID,AlFadda Waleed Mohammed1

Affiliation:

1. Mechanical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia

Abstract

Generators and condensers are the two vital equipment items that determine the output of vapor absorption refrigeration systems. Arid weather conditions produce a significant reduction in the performance of the vapor absorption refrigeration cycle due to low condenser heat dissipation despite high generator temperatures. Although numerous studies on condenser cooling methods in vapor compression systems have been reported in the literature, solar-operated vapor absorption systems have not been studied. Limitations in generator temperatures of solar-operated vapor absorption systems necessitate a focused study in this area. This study makes the selection of the best choice for condenser cooling from among four different condenser cooling methods which have an impact on the performance of the vapor absorption refrigeration system for effective cooling using solar energy. A solar vapor absorption refrigeration system working with low-grade heat using a compound parabolic collector is considered in this study. Analysis of a vapor absorption refrigeration system for cooling in arid weather conditions is carried out using different condenser cooling methods with Engineering Equation Solver. Initially, the model used in the study is compared with a similar study reported in the literature. Techniques considered are air, water, evaporative, and hybrid cooling techniques. The performance of the vapor absorption cooling system was analyzed using experimental values of a solar compound parabolic collector obtained from real-time measurements for simulating the model. Results show that water cooling can provide suitable condenser cooling and improve the coefficient of performance of the solar vapor absorption refrigeration system using the solar collector. The water-cooled condenser has 1.9%, 3.3%, and 2.1% higher COP when compared to air-cooled condensers for spring, summer, and autumn seasons respectively, whereas the water-cooled condenser cooling recorded 6%, 14%, and 8% higher COP relative to the evaporative cooling method. Cost comparison showed maximum cost for water-cooled condensers and minimum cost for hybrid-cooled condensers. The effect of each cooling method on the environment is discussed.

Funder

National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3