Easy and Low-Cost Method for Synthesis of Carbon–Silica Composite from Vinasse and Study of Ibuprofen Removal

Author:

Ngernyen YuvaratORCID,Siriketh Thitipong,Manyuen Kritsada,Thawngen Panta,Rodtoem Wipha,Wannuea Kritiyaporn,Knijnenburg Jesper T. N.ORCID,Budsaereechai Supattra

Abstract

Vinasse was successfully utilized to synthesize carbon–silica composite with a low-cost silica source available in Thailand (sodium silicate, Na2SiO3) and most commonly used source, tetraethyl orthosilicate (TEOS). The composites were prepared by a simple one-step sol–gel process by varying the vinasse (as carbon source) to silica source (Na2SiO3 or TEOS) weight ratio. The resulting composites were characterized by N2 adsorption, moisture and ash contents, pH, pHpzc, bulk density, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX). The composites had highest surface area of 313 and 456 m2/g, with average mesopore diameters of 5.00 and 2.62 nm when using Na2SiO3 and TEOS as the silica sources, respectively. The adsorption of a non-steroidal anti-inflammatory drug, ibuprofen, was investigated. The contact time to reach equilibrium was 60 min for both composites. The adsorption kinetics were fitted by a pseudo-second-order model with the correlation coefficient R2 > 0.997. The adsorption isotherms were well described by the Langmuir model (R2 > 0.992), which indicates monolayer adsorption. The maximal adsorption capacities of the Na2SiO3- and TEOS-based composites were as high as 406 and 418 mg/g at pH 2, respectively. The research results indicate that vinasse and a low-cost silica source (Na2SiO3) show great potential to synthesize adsorbents through a simple method with high efficiency.

Funder

The Office of National Higher Education Science Research and Innovation Policy Council (NXPO) via PMU Flagship

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3