Preparation of eGaIn NDs/TPU Composites for X-ray Radiation Shielding Based on Electrostatic Spinning Technology

Author:

Wang Jing1,Wang Kaijun1,Wu Jiale1,Hu Jin1,Mou Jiangfeng1,Li Lian1,Feng Yongjin2,Deng Zhongshan3

Affiliation:

1. College of Materials Science and Engineering, Kunming University of Science and Technology, 121 Street, Wenchang Road 68, Kunming 650093, China

2. Southwestern Institute of Physics, Huangjing Road 5, Chengdu 610041, China

3. Beijing Key Laboratory of Cryo-Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

Abstract

Thermoplastic polyurethane (TPU) composites with eutectic gallium (Ga) and indium (In) (eGaIn) fillings of 0 wt%–75 wt% were prepared using the electrostatic spinning method. Field emission scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared (FTIR) spectroscopy were used to characterize the eGaIn NDs/TPU composites. To evaluate their X-ray shielding properties, Phy-X/PSD and WinXCom were employed to calculate the mass attenuation coefficients, linear attenuation coefficients, half-value layers, tenth value layers, mean free paths, and adequate atomic numbers of the eGaIn NDs/TPU composites. The SEM results indicated that the eGaIn nanodroplets were evenly distributed throughout the TPU fibers, and the flowable eGaIn was well-suited for interfacial compatibility with the TPU. A comparison of the eGaIn NDs/TPU composites with different content levels showed that the composite with 75 wt% eGaIn had the highest μm at all the evaluated energies, indicating a superior ability to attenuate X-rays. This non-toxic, lightweight, and flexible composite is a potential material for shielding against medical diagnostic X-rays.

Funder

Analysis and Testing Foundation of Kunming University of Science and Technology

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3