Research Progress on Surface Damage and Protection Strategies of Armature–Rail Friction Pair Materials for Electromagnetic Rail Launch

Author:

Wang Xing1,Yao Pingping1,Zhou Haibin2,Fan Kunyang3,Deng Minwen1,Kang Li1,Yuan Zihao1,Lin Yongqiang1

Affiliation:

1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China

2. College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China

3. School of Mechanical Engineering, Chengdu University, Chengdu 610106, China

Abstract

Electromagnetic rail launch technology has attracted increasing attention owing to its advantages in terms of range, firepower, and speed. However, due to electricity-magnetism-heat-force coupling, the surface of the armature–rail friction pair becomes severely damaged, which restricts the development of this technology. A series of studies have been conducted to reduce the damage of the armature–rail friction pair, including an analysis of the damage mechanism and protection strategies. In this study, various types of surface damage were classified into mechanical, electrical, and coupling damages according to their causes. This damage is caused by factors such as mechanical friction, mechanical impact, and electric erosion, either individually or in combination. Then, a detailed investigation of protection strategies for reducing damage is introduced, including material improvement through the use of novel combined deformation and heat treatment processes to achieve high strength and high conductivity, as well as surface treatment technologies such as structural coatings for wear resistance and functional coatings for ablation and melting resistance. Finally, future development prospects of armature–rail friction pair materials are discussed. This study provides a theoretical basis and directions for the development of high-performance materials for the armature–rail friction pair.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3