The Effect of Mono and Hybrid Additives of Ceramic Nanoparticles on the Tribological Behavior and Mechanical Characteristics of an Al-Based Composite Matrix Produced by Friction Stir Processing

Author:

Moustafa Essam B.1ORCID,Taha Mohammed A.2

Affiliation:

1. Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah P.O. Box 80204, Saudi Arabia

2. Solid State Physics Department, National Research Centre, El Buhouth St., Dokki 12622, Egypt

Abstract

Friction stir processing (FSP) is an effective method for incorporating ceramic nanoparticles into metal matrix composites. This study investigated the effects of single and multiple additions of BN, VC, and SiC nanoparticles on the microstructure refinement and tribological behavior of an AA2024 alloy-based nanocomposite matrix fabricated by FSP. The results showed that adding ceramic nanoparticles, either singly or in combination, led to significant refinement of grain structure and improved wear resistance of the AA2024 alloy-based nanocomposite matrix. Additionally, the study found that combining BN, SiC, and VC nanoparticles produced the most effective effects on refining and reducing grain size. The microhardness behavior of the composite surface resulting from the hybrid particles showed a significant improvement, reaching 94% more than the base alloy. Overall, these results indicate that the multiple additions of ceramic nanoparticles by FSP are a promising approach to improve aluminum alloys’ tribological behavior and mechanical properties.

Funder

King Abdulaziz University

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3