Bi-MOF-Derived Carbon Wrapped Bi Nanoparticles Assembly on Flexible Graphene Paper Electrode for Electrochemical Sensing of Multiple Heavy Metal Ions

Author:

Hu Min1,He Hu2,Xiao Fei13,Liu Chen1

Affiliation:

1. Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, China

2. Technology Inspection Center of Sheng Li Oil Filed, Dongying 257000, China

3. Research Institution of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518052, China

Abstract

The development of nanohybrid with high electrocatalytic activity is of great significance for electrochemical sensing applications. In this work, we develop a novel and facile method to prepare a high-performance flexible nanohybrid paper electrode, based on nitrogen-doped carbon (NC) wrapped Bi nanoparticles (Bi-NPs) assembly derived from Bi-MOF, which are decorated on a flexible and freestanding graphene paper (GP) electrode. The as-obtained Bi-NPs encapsulated by an NC layer are uniform, and the active sites are increased by introducing a nitrogen source while preparing Bi-MOF. Owing to the synergistic effect between the high conductivity of GP electrode and the highly efficient electrocatalytic activity of Bi-NPs, the NC wrapped Bi-NPs (Bi-NPs@NC) modified GP (Bi-NPs@NC/GP) electrode possesses high electrochemically active area, rapid electron-transfer capability, and good electrochemical stability. To demonstrate its outstanding functionality, the Bi-NPs@NC/GP electrode has been integrated into a handheld electrochemical sensor for detecting heavy metal ions. The result shows that Zn2+, Cd2+, and Pb2+ can be detected with extremely low detection limits, wide linear range, high sensitivity, as well as good selectivity. Furthermore, it demonstrates outstanding electrochemical sensing performance in the simultaneous detection of Zn2+, Cd2+, and Pb2+. Finally, the proposed electrochemical sensor has achieved excellent repeatability, reproducibility, stability, and reliability in measuring real water samples, which will have great potential in advanced applications in environmental systems.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Science, Technology and Innovation Commission of Shenzhen Municipality

program for HUST Academic Frontier Youth Team

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3