Silica Nanoparticle-Infused Omniphobic Polyurethane Foam with Bacterial Anti-Adhesion and Antifouling Properties for Hygiene Purposes

Author:

Cho Dongik1,Oh Jun Kyun1ORCID

Affiliation:

1. Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Gyeonggi-do, Republic of Korea

Abstract

In this study, a method for preventing cross-infection through the surface coating treatment of polyurethane (PU) foam using functionalized silica nanoparticles was developed. Experimental results confirmed that the fabricated PU foam exhibited omniphobic characteristics, demonstrating strong resistance to both polar and nonpolar contaminants. Additionally, quantitative analysis using the pour plate method and direct counting with a scanning electron microscope determined that the treated material exhibited anti-adhesion properties against bacteria. The fabricated PU foam also demonstrated a high level of resistance to the absorption of liquids commonly found in medical facilities, including blood, 0.9% sodium chloride solution, and 50% glycerol. Mechanical durability and stability were verified through repeated compression tests and chemical leaching tests, respectively. The proposed coated PU foam is highly effective at preventing fouling from polar and nonpolar fluids as well as bacteria, making it well-suited for use in a range of fields requiring strict hygiene standards, including the medical, food, and environmental industries.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3