Synthesis of Si/C Composites by Silicon Waste Recycling and Carbon Coating for High-Capacity Lithium-Ion Storage

Author:

Huang Jinning1,Li Jun2,Ye Lanxin1,Wu Min1,Liu Hongxia3,Cui Yingxue2ORCID,Lian Jiabiao2,Wang Chuan1

Affiliation:

1. Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China

2. Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China

3. College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, China

Abstract

It is of great significance to recycle the silicon (Si) kerf slurry waste from the photovoltaic (PV) industry. Si holds great promise as the anode material for Li-ion batteries (LIBs) due to its high theoretical capacity. However, the large volume expansion of Si during the electrochemical processes always leads to electrode collapse and a rapid decline in electrochemical performance. Herein, an effective carbon coating strategy is utilized to construct a precise Si@CPPy composite using cutting-waste silicon and polypyrrole (PPy). By optimizing the mass ratio of Si and carbon, the Si@CPPy composite can exhibit a high specific capacity and superior rate capability (1436 mAh g−1 at 0.1 A g−1 and 607 mAh g−1 at 1.0 A g−1). Moreover, the Si@CPPy composite also shows better cycling stability than the pristine prescreen silicon (PS-Si), as the carbon coating can effectively alleviate the volume expansion of Si during the lithiation/delithiation process. This work showcases a high-value utilization of PV silicon scraps, which helps to reduce resource waste and develop green energy storage.

Funder

Nanjing Tech University Research Start-up Fund

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3