A CFO-Assisted Algorithm for Wireless Time-Difference-of-Arrival Localization Networks: Analytical Study and Experimental Results

Author:

Hannotier Cédric1,Horlin François1ORCID,Quitin François1ORCID

Affiliation:

1. Brussels School of Engineering, Université libre de Bruxelles, Avenue Franklin Roosevelt 50, 1000 Brussels, Belgium

Abstract

Localization of wireless transmitters is traditionally done using Radio Frequency (RF) sensors that measure the propagation delays between the transmitter and a set of anchor receivers. One of the major challenges of wireless localization systems is the need for anchor nodes to be time-synchronized to achieve accurate localization of a target node. Using a reference transmitter is an efficient way to synchronize the anchor nodes Over-The-Air (OTA), but such algorithms require multiple periodic messages to achieve tight synchronization. In this paper, we propose a new synchronization method that only requires a single message from a reference transmitter. The main idea is to use the Carrier Frequency Offset (CFO) from the reference node, alongside the Time of Arrival (ToA) of the reference node messages, to achieve tight synchronization. The ToA allows the anchor nodes to compensate for their absolute time offset, and the CFO allows the anchor nodes to compensate for their local oscillator drift. Additionally, using the CFO of the messages sent by the reference nodes and the target nodes also allow us to estimate the speed of the targets. The error of the proposed algorithm is derived analytically and is validated through controlled laboratory experiments. Finally, the algorithm is validated by realistic outdoor vehicular measurements with a software-defined radio testbed.

Funder

La Région wallone

Fonds de la Recherche Scientifique

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3