Improvement of Acoustic Models Fused with Lip Visual Information for Low-Resource Speech

Author:

Yu Chongchong1,Yu Jiaqi1ORCID,Qian Zhaopeng1ORCID,Tan Yuchen1

Affiliation:

1. School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China

Abstract

Endangered language generally has low-resource characteristics, as an immaterial cultural resource that cannot be renewed. Automatic speech recognition (ASR) is an effective means to protect this language. However, for low-resource language, native speakers are few and labeled corpora are insufficient. ASR, thus, suffers deficiencies including high speaker dependence and over fitting, which greatly harms the accuracy of recognition. To tackle the deficiencies, the paper puts forward an approach of audiovisual speech recognition (AVSR) based on LSTM-Transformer. The approach introduces visual modality information including lip movements to reduce the dependence of acoustic models on speakers and the quantity of data. Specifically, the new approach, through the fusion of audio and visual information, enhances the expression of speakers’ feature space, thus achieving the speaker adaptation that is difficult in a single modality. The approach also includes experiments on speaker dependence and evaluates to what extent audiovisual fusion is dependent on speakers. Experimental results show that the CER of AVSR is 16.9% lower than those of traditional models (optimal performance scenario), and 11.8% lower than that for lip reading. The accuracy for recognizing phonemes, especially finals, improves substantially. For recognizing initials, the accuracy improves for affricates and fricatives where the lip movements are obvious and deteriorates for stops where the lip movements are not obvious. In AVSR, the generalization onto different speakers is also better than in a single modality and the CER can drop by as much as 17.2%. Therefore, AVSR is of great significance in studying the protection and preservation of endangered languages through AI.

Funder

Ministry of Education Humanities and Social Sciences Research Planning Fund Project of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3