Real-Time Dense Reconstruction with Binocular Endoscopy Based on StereoNet and ORB-SLAM

Author:

Huo Jiayi1,Zhou Changjiang2,Yuan Bo1,Yang Qing2,Wang Liqiang2

Affiliation:

1. State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China

2. Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou 311100, China

Abstract

Binocular endoscopy is gradually becoming the future of minimally invasive surgery (MIS) thanks to the development of stereo vision. However, some problems still exist, such as the low reconstruction accuracy, small surgical field, and low computational efficiency. To solve these problems, we designed a framework for real-time dense reconstruction in binocular endoscopy scenes. First, we obtained the initial disparity map using an SGBM algorithm and proposed the disparity confidence map as a dataset to provide StereoNet training. Then, based on the depth map predicted by StereoNet, the corresponding left image of each depth map was input into the Oriented Fast and Brief-Simultaneous Localization and Mapping (ORB-SLAM) framework using an RGB-D camera to realize the real-time dense reconstruction of the binocular endoscopy scene. The proposed algorithm was verified in the stomach phantom and a real pig stomach. Compared with the ground truth, the proposed algorithm’s RMSE is 1.620 mm, and the number of effective points in the point cloud is 834,650, which is a significant improvement in the mapping ability compared with binocular SLAM and ensures the real-time performance of the algorithm while performing dense reconstruction. The effectiveness of the proposed algorithm is verified.

Funder

Major Program of National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3