Deposition of Durable Micro Copper Patterns into Glass by Combining Laser-Induced Backside Wet Etching and Laser-Induced Chemical Liquid Phase Deposition Methods

Author:

Seo Jae Min,Kwon Kui-Kam,Song Ki Young,Chu Chong Nam,Ahn Sung-Hoon

Abstract

Glass is a well-known non-conductive material that has many useful properties, and considerable research has been conducted into making circuits on glass. Many deposition techniques have been studied, and laser-induced chemical liquid phase deposition (LCLD) is a well-known and cost-effective method for rapid prototyping of copper deposition on glass. However, the deposition results from the LCLD method on the surface of glass, which shows an issue in its detachment from the substrates because of the relatively low adhesion between deposited copper and the nontreated glass surface. This problem undermines the usability of deposited glass in industrial applications. In this study, the laser-induced backside wet etching (LIBWE) method was performed as a preceding process to fabricate microchannels, which were filled with copper by LCLD. Additional durable copper wire was produced as a result of the enhanced adhesion between the glass and the deposited copper. The adhesion was enhanced by a rough surface and metal layer, which are characteristics of LIBWE machining. Furthermore, the proposed method is expected to broaden the use of deposited glass in industrial applications, such as in stacked or covered multilayer structures with built-in copper wires, because the inserted copper can be physically protected by the microstructures.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3