Wear Simulation of Ceramic-on-Crosslinked Polyethylene Hip Prostheses: A New Non-Oxide Silicon Nitride versus the Gold Standard Composite Oxide Ceramic Femoral Heads

Author:

Yorifuji Makiko,Affatato SaverioORCID,Tateiwa ToshiyukiORCID,Takahashi YasuhitoORCID,Shishido Takaaki,Marin EliaORCID,Zanocco Matteo,Zhu Wenliang,Pezzotti Giuseppe,Yamamoto Kengo

Abstract

The purpose of the present study was to compare the wear behavior of ceramic-on-vitamin-E-diffused crosslinked polyethylene (Vit-E XLPE) hip bearings employing the gold standard oxide ceramic, zirconia (ZrO2)-toughened alumina (Al2O3) (ZTA, BIOLOX®delta) and a new non-oxide ceramic, silicon nitride (Si3N4, MC2®). In vitro wear test was performed using a 12-station hip joint simulator. The test was carried out by applying the kinematic inputs and outputs as recommended by ISO 14242-1:2012. Vitamin-E-diffused crosslinked polyethylene (Vit-E XLPE) acetabular liners (E1®) were coupled with Ø28-mm ZTA and Si3N4 femoral heads. XLPE liner weight loss over 5 million cycles (Mc) of testing was compared between the two different bearing couples. Surface topography, phase contents, and residual stresses were analyzed by contact profilometer and Raman microspectroscopy. Vit-E XLPE liners coupled with Si3N4 heads produced slightly lower wear rates than identical liners with ZTA heads. The mean wear rates (corrected for fluid absorption) of liners coupled with ZTA and Si3N4 heads were 0.53 ± 0.24 and 0.49 ± 0.23 mg/Mc after 5 Mc of simulated gait, respectively. However, after wear testing, the ZTA heads retained a smoother topography and showed fewer surface stresses than the Si3N4 ones. Note that no statistically significant differences were found in the above comparisons. This study suggests that the tribochemically formed soft silica layer on the Si3N4 heads may have reduced friction and slightly lowered the wear of the Vit-E XLPE liners. Considering also that the toughness of Si3N4 is superior to ZTA, the present wear data represent positive news in the future development of long-lasting hip components.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3