U-Net-LSTM: Time Series-Enhanced Lake Boundary Prediction Model

Author:

Yin Lirong1ORCID,Wang Lei1ORCID,Li Tingqiao2,Lu Siyu2,Tian Jiawei2ORCID,Yin Zhengtong3ORCID,Li Xiaolu4ORCID,Zheng Wenfeng2ORCID

Affiliation:

1. Department of Geography & Anthropology, Louisiana State University, Baton Rouge, LA 70803, USA

2. School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China

3. College of Resource and Environment Engineering, Guizhou University, Guiyang 550025, China

4. School of Geographical Sciences, Southwest University, Chongqing 400715, China

Abstract

Change detection of natural lake boundaries is one of the important tasks in remote sensing image interpretation. In an ordinary fully connected network, or CNN, the signal of neurons in each layer can only be propagated to the upper layer, and the processing of samples is independent at each moment. However, for time-series data with transferability, the learned change information needs to be recorded and utilized. To solve the above problems, we propose a lake boundary change prediction model combining U-Net and LSTM. The ensemble of LSTMs helps to improve the overall accuracy and robustness of the model by capturing the spatial and temporal nuances in the data, resulting in more precise predictions. This study selected Lake Urmia as the research area and used the annual panoramic remote sensing images from 1996 to 2014 (Lat: 37°00′ N to 38°15′ N, Lon: 46°10′ E to 44°50′ E) obtained by Google Earth Professional Edition 7.3 software as the research data set. This model uses the U-Net network to extract multi-level change features and analyze the change trend of lake boundaries. The LSTM module is introduced after U-Net to optimize the predictive model using historical data storage and forgetting as well as current input data. This method enables the model to automatically fit the trend of time series data and mine the deep information of lake boundary changes. Through experimental verification, the model’s prediction accuracy for lake boundary changes after training can reach 89.43%. Comparative experiments with the existing U-Net-STN model show that the U-Net-LSTM model used in this study has higher prediction accuracy and lower mean square error.

Funder

Sichuan Science and Technology Program

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3