Soil Quality Evaluation for Cotton Fields in Arid Region Based on Graph Convolution Network

Author:

Fan Xianglong1,Gao Pan2ORCID,Zuo Li1,Duan Long2,Cang Hao2,Zhang Mengli2,Zhang Qiang1,Zhang Ze1ORCID,Lv Xin1,Zhang Lifu13ORCID

Affiliation:

1. Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China

2. College of Information Science and Technology, Shihezi University, Shihezi 832003, China

3. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China

Abstract

Accurate soil quality evaluation is an important prerequisite for improving soil management systems and remediating soil pollution. However, traditional soil quality evaluation methods are cumbersome to calculate, and suffer from low efficiency and low accuracy, which often lead to large deviations in the evaluation results. This study aims to provide a new and accurate soil quality evaluation method based on graph convolution network (GCN). In this study, soil organic matter (SOM), alkaline hydrolysable nitrogen (AN), available potassium (AK), salinity, and heavy metals (iron (Fe), copper (Cu), manganese (Mn), and zinc (Zn)) were determined and evaluated using the soil quality index (SQI). Then, the graph convolution network (GCN) was first introduced in the soil quality evaluation to construct an evaluation model, and its evaluation results were compared with those of the SQI. Finally, the spatial distribution of the evaluation results of the GCN model was displayed. The results showed that soil salinity had the largest coefficient of variation (86%), followed by soil heavy metals (67%) and nutrients (30.3%). The soil salinization and heavy metal pollution were at a low level in this area, and the soil nutrients and soil quality were at a high level. The evaluation accuracy of the GCN model for soil salinity/heavy metals, soil nutrients, and soil quality were 0.91, 0.84, and 0.90, respectively. Therefore, the GCN model has a high accuracy and is feasible to be applied in the soil quality evaluation. This study provides a new, simple, and highly accurate method for soil quality evaluation.

Funder

Xinjiang Production and Construction Corps

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3